If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-20x-42=10
We move all terms to the left:
x^2-20x-42-(10)=0
We add all the numbers together, and all the variables
x^2-20x-52=0
a = 1; b = -20; c = -52;
Δ = b2-4ac
Δ = -202-4·1·(-52)
Δ = 608
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{608}=\sqrt{16*38}=\sqrt{16}*\sqrt{38}=4\sqrt{38}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{38}}{2*1}=\frac{20-4\sqrt{38}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{38}}{2*1}=\frac{20+4\sqrt{38}}{2} $
| x-x(0.15)=133298.60 | | x-x(0.15)=133,298.60 | | 7x+23=114 | | q+2/3=25/6 | | -6.2x+1.4,x=-9.3 | | 6x-24=10 | | 2=1/2(10x+6) | | Y=39(.098)t | | 8/3t=3/4 | | 20x+100=30 | | (3x+10)+(x+40)=180 | | 3x=2x-5x | | 2x-4/2=34 | | y=94(0.92)^2 | | 9=(x+4)/(x+12) | | 5x-4=19x | | -7+2=-4x-7 | | 9k+10=21 | | 5x+17=11x-29 | | t2-2t+(3/4)=0 | | -12c+13=-25 | | t2-2t+(5/4)=0 | | 6x-6=11x-49 | | t-2t+(5/4)=0 | | 4x+10+6x=2 | | -12c+13=25 | | t-2t+5/4=0 | | 4w+5=8 | | x=±√346−13x=±346-13 | | 20x-2=18x-110 | | 19p-8=49 | | 6x+7-x=5x+3 |